jueves, 10 de abril de 2014

corriente electrica


CORRIENTE ELÉCTRICA




La corriente eléctrica o intensidad eléctrica es el flujo de carga eléctrica por unidad de tiempo que recorre un material.  Se debe al movimiento de las cargas (normalmente  en el interior del material. En el Sistema se expresa en (culombios sobre segundo), unidad que se denomina amperio. Una corriente eléctrica, puesto que se trata de un movimiento de cargas, produce un campo magnético, un fenómeno que puede aprovecharse en el electroimán.

El instrumento usado para medir la intensidad de la corriente eléctrica es el galvanómetro que, calibrado en amperios, se llama amperímetro, colocado en serie con el conductor cuya intensidad se desea medir.

Historia
Históricamente, la corriente eléctrica se definió como un flujo de cargas positivas y se fijó el sentido convencional de circulación de la corriente, como un flujo de cargas desde el polo positivo al negativo. Sin embargo posteriormente se observó, gracias al efecto Hall, que en los metales los portadores de carga son negativos, electrones, los cuales fluyen en sentido contrario al convencional. En conclusión, el sentido convencional y el real son ciertos en tanto que los electrones como protones fluyen desde el polo negativo hasta llegar al positivo (sentido real), cosa que no contradice que dicho movimiento se inicia al lado del polo positivo donde el primer electrón se ve atraído por dicho polo creando un hueco para ser cubierto por otro electrón del siguiente átomo y así sucesivamente hasta llegar al polo negativo (sentido convencional) es decir la corriente eléctrica es el paso de electrones desde el polo negativo al positivo comenzando dicha progresión en el polo positivo.En el siglo XVIII cuando se hicieron los primeros experimentos con electricidad, sólo se disponía de carga eléctrica generada por frotamiento (Electricidad Estática) o por inducción. Se logró (por primera vez, en 1800) tener un movimiento constante de carga cuando el físico italiano Alessandri Volta inventó la primera pila eléctrica.

En el siglo XVIII cuando se hicieron los primeros experimentos con electricidad, sólo se disponía de carga eléctrica generada por frotamiento (Electricidad Estática) o por inducción. Se logró (por primera vez, en 1800) tener un movimiento constante de carga cuando el físico italiano Alessandri Volta inventó la primera pila eléctrica.
En el siglo XVIII cuando se hicieron los primeros experimentos con electricidad, sólo se disponía de carga eléctrica generada por frotamiento (Electricidad Estática) o por inducción. Se logró (por primera vez, en 1800) tener un movimiento constante de carga cuando el físico italiano Alessandri Volta inventó la primera pila eléctrica.










lunes, 3 de marzo de 2014

fuerza electrica




FUERZA ELECTRICA

Es la fuerza entre dos cargas depende del valor de las cargas y de las distancia que las separa.
  • Las cargas del mismo signo se repelen
  • Las cargas de distinto signo se atraen





La fuerza entre dos cargas se calcula como:








q1, q2 = Valor de las cargas 1 y 2

d = Distancia de separación entre las cargas

Fe = Fuerza eléctrica



Dirección de la fuerza eléctrica
Si se trata únicamente de dos cargas, la dirección de la fuerza es colineal a la recta que une ambas cargas.


Sentido de la fuerza eléctrica
El sentido de la fuerza actuante entre dos cargas es de repulsión si ambas cargas son del mismo signo y de atracción si las cargas son de signo contrario.


Fuerzas originadas por varias cargas sobre otra
Si se tienen varias cargas y se quiere hallar la fuerza resultante sobre una de ellas, lo que se debe hacer es plantear cada fuerza sobre la carga (una por cada una de las otras cargas). Luego se tienen todas las fuerzas actuantes sobre esta carga y se hace la composición de fuerzas, con lo que se obtiene un vector resultante.


Conductores Aislantes

Los materiales presentan distintos comportamientos ante el movimiento de cargas eléctricas.
Conductores: Los elementos conductores tienen facilidad para permitir el movimiento de cargas y sus átomos se caracterizan por tener muchos electrones libres y aceptarlos o cederlos con facilidad, por lo tanto son materiales que conducen la electricidad.

Aisladores: Los aisladores son materiales que presentan cierta dificultad al paso de la electricidad y al movimiento de cargas. Tienen mayor dificultad para ceder o aceptar electrones. En una u otra medida todo material conduce la electricidad, pero los aisladores lo hacen con mucha mayor dificultad que los elementos conductores.

Carga por Fricción

Es el método de carga en el que se transfieren electrones de un material a otro, porque se rozan o friccionan. En la carga por fricción se transfiere gran cantidad de electrones porque la fricción aumenta el contacto de un material con el otro. Los electrones más internos de un átomo están fuertemente unidos al núcleo, de carga opuesta, pero los más externos de muchos átomos están unidos muy débilmente y pueden desalojarse con facilidad. La fuerza que retiene a los electrones exteriores en el átomo varia de una sustancia a otra. Por ejemplo los electrones son retenidos con mayor fuerza en la resina que en la lana, y si se frota una torta de resina con un tejido de lana bien seco, se transfieren los electrones de la lana a la resina. Por consiguiente la torta de resina queda con un exceso de electrones y se carga negativamente. A su vez, el tejido de lana queda con una deficiencia de electrones y adquiere una carga positiva. Los átomos con deficiencia de electrones son iones, iones positivos porque, al perder electrones (que tienen carga negativa), su carga neta resulta positiva.

Carga por Inducción

Cuando un cuerpo con carga eléctrica se aproxima a otro neutro causando una redistribución, en las cargas de éste último, debido a la repulsión generada por las cargas del material cargado.
Para completar el proceso de carga por inducción se debe conectar brevemente el objeto a "tierra" y luego retirar el cuerpo cargado.
Se puede cargar un cuerpo por un procedimiento sencillo que comienza con el acercamiento a él de una varilla de material aislante, cargada. Considérese una esfera conductora no cargada, suspendida de un hilo aislante. Al acercarle la varilla cargada negativamente, los electrones de conducción que se encuentran en la superficie de la esfera emigran hacia el lado lejano de ésta; como resultado, el lado lejano de la esfera se carga negativamente y el cercano queda con carga positiva. La esfera oscila acercándose a la varilla, porque la fuerza de atracción entre el lado cercano de aquélla y la propia varilla es mayor que la de repulsión entre el lado lejano y la varilla. Vemos que tiene una fuerza eléctrica neta, aun cuando la carga neta en las esfera como un todo sea cero. La carga por inducción no se restringe a los conductores, sino que puede presentarse en todos los materiales.

El campo Eléctrico

Existe cuando existe una carga y representa el vínculo entre ésta y otra carga al momento de determinar la interacción entre ambas y las fuerzas ejercidas. Tiene carácter vectorial (campo vectorial) y se representa por medio de líneas de campo. Si la carga es positiva, el campo eléctrico es radial y












El instrumento usado para medir la intensidad de la corriente eléctrica es el galvanómetro que, calibrado en amperios, se llama amperímetro, colocado en serie con el conductor cuya intensidad se desea medir.





Un material conductor posee gran cantidad de electrones libres, por lo que es posible el paso de la electricidad a través del mismo. Los electrones libres, aunque existen en el material, no se puede decir que pertenezcan a algún átomo determinado.
Una corriente de electricidad existe en un lugar cuando una carga neta se transporta desde ese lugar a otro en dicha región. Supongamos que la carga se mueve a través de un alambre. Si la carga q se transporta a través de una sección transversal dada del alambre, en un tiempo t, entonces la intensidad de corriente I, a través del alambre es:



Aquí q está dada en culombios, t en segundos, e I en amperios. Por lo cual, la equivalencia es:



Una característica de los electrones libres es que, incluso sin aplicarles un campo eléctrico desde afuera, se mueven a través del objeto de forma aleatoria debido a la energía calórica. En el caso de que no hayan aplicado ningún campo eléctrico, cumplen con la regla de que la media de estos movimientos aleatorios dentro del objeto es igual a cero. Esto es: dado un plano irreal trazado a través del objeto, si sumamos las cargas (electrones) que atraviesan dicho plano en un sentido, y sustraemos las cargas que lo recorren en sentido inverso, estas cantidades se anulan.
Lo que conocemos como corriente eléctrica no es otra cosa que la circulación de cargas o electrones a través de un circuito eléctrico cerrado, que se mueven siempre del polo negativo al
polo positivo de la fuente de suministro de fuerza electromotriz.



En un circuito eléctrico cerrado la.corriente circula siempre del polo.negativo al polo positivo de la.fuente de fuerza electromotriz

Quizás hayamos oído hablar o leído en algún texto que el sentido convencional de circulación de la corriente eléctrica por un circuito es a la inversa, o sea, del polo positivo al negativo de la fuente. Ese planteamiento tiene su origen en razones históricas y no a cuestiones de la física y se debió a que en la época en que se formuló la teoría que trataba de explicar cómo fluía la corriente eléctrica por los metales, los físicos desconocían la existencia de los electrones o cargas negativas.

Al descubrirse los electrones como parte integrante de los átomos y principal componente de las cargas eléctricas, se descubrió también que las cargas eléctricas que proporciona una fuente de FEM (Fuerza Electromotriz), se mueven del signo negativo (–) hacia el positivo (+), de acuerdo con la ley física de que "cargas distintas se atraen y cargas iguales se rechazan". Debido al desconocimiento en aquellos momentos de la existencia de los electrones, la comunidad científica acordó que, convencionalmente, la corriente eléctrica se movía del polo positivo al negativo, de la misma forma que hubieran podido acordar lo contrario, como realmente ocurre. No obstante en la práctica, ese “error histórico” no influye para nada en lo que al estudio de la corriente eléctrica se refiere.









capacitancia


Capacitancia

La capacitancia es la cualidad que tienen los diferentes tipos de condensadores para liberar una cierta cantidad de energía en un determinado momento.

Se define también, como la razón entre la magnitud de la carga (Q) en cualquiera de los conductores y la magnitud de la diferencia de potencial entre ellos (V). Es entonces la medida de la capacidad de almacenamiento de la carga eléctrica.
C = Q / V
El Voltaje es directamente proporcional a la carga almacenada, por lo que se da que la proporción Q/V es constante para un capacitor dado. La capacitancia se mide en Coulumb/ Volt o también en Farads o Faradios(F).La capacitancia es siempre una magnitud positiva.




TIPOS DE CAPACITORES




BIBLIOGRAFIA








RIGIDEZ DIELÉCTRICA


Entendemos por rigidez dieléctrica o rigidez electrostática el valor límite de la intensidad del campo eléctrico en el cual un material pierde su propiedad aislante y pasa a ser conductor. Se mide en voltios por metro V/m (en el SI).

También podemos definirla como la máxima tensión que puede soportar un aislante sin perforarse. A esta tensión se la denomina tensión de rotura de un dieléctrico

ER = V / d        (v /m )


Sustancia
Rotura dieléctrica (MV/m)
0.15
0.4 - 3.0 (depende de la presión)
13.4
Vidrio de ventana
9.8 - 13.8
10 - 15
16
19.7
18.9 - 21.7
Goma de Neopreno
15.7 - 27.6
30
20 - 40 (depende de la forma del electrodo)
25 - 40
Papel de cera
40 - 60
60
20 - 70
Película delgada de SiO2
> 1000
13.9
Papel parafinado
32 - 40 (depende del grosor de cada material)


Capacitor de placas planas y paralelas.



Dos placas paralelas de igual área A están separadas una distancia d como en la figura. Una placa tiene carga +Q, y la otra, carga -Q.

  E =  s  / E0  =  j / E (A)                                             s = ( Q / A )  ( C /m)  


http://docencia.udea.edu.co/regionalizacion/irs-404/imagenes/capitulo6/Image200.gif




ALMACENAR ENERGÍA EN UN CONDENSADOR




La energía almacenada en un condensador, se puede expresar en términos del trabajo realizado por la batería. El Voltaje representa la energía por unidad de carga, de modo que el trabajo para mover un elemento de carga dq desde la placa negativa a la placa positiva es igual a V dq, donde V es el voltaje sobre el condensador. El voltaje es proporcional a la cantidad de carga que ya está en el condensador.




Elemento de energía almacenada:
http://hyperphysics.phy-astr.gsu.edu/hbasees/electric/imgele/cape10.gif


Si Q es la cantidad de carga almacenada cuando el voltaje entero de la batería aparece en los terminales del condensador, entonces la energía almacenada se obtiene de la integral:


http://hyperphysics.phy-astr.gsu.edu/hbasees/electric/imgele/cape9.gif


Esta expresión de la energía se puede poner en tres formas equivalentes por solo permutaciones de la definición de capacidad C=Q/V.


http://hyperphysics.phy-astr.gsu.edu/hbasees/electric/imgele/cape2.gif







Resistor está diseñado para tener Resistencia, el Capacitor está diseñado para tener Capacitancia; mientras que los resistores se oponen al flujo de la corriente, los capacitores se oponen a cualquier cambio en el Tensión eléctrica; el Capacitor más pequeño capaz de acumular carga eléctrica se construye de dos placas y un aislante de aire llamado dieléctrico.



Los factores que determinan la Capacitancia de un Capacitor simple son: a) el área de la placas, b) la separación entre las placas y c) el material del dieléctrico; La Capacitancia es directamente proporcional al área de las placas y a la constante dieléctrica del material dieléctrico utilizado e inversamente proporcional a la distancia de separación de las placas, es decir: C = k A/ d = Faradios ; De ahí que si el área de las placas aumenta, con ello aumenta la Capacitancia; por el contrario, si la separación de las placas aumenta, disminuye la Capacitancia

De acuerdo a la fórmula C = k A / d, obtenemos el resultado en Faradios; si queremos el Resultado en Micro faradios (símbolo μf) entonces agregamos el factor de conversión 8.85 x 10 -" -y nuestra fórmula quedará así: C = 8.85xlO-8 A/d
Donde: C = Capacitancia en μf(Micro faradios)
A = Área de las placas, cm2
D = Distancia de separación de las placas, en cm.
En la práctica los capacitores suelen tener más de una placa, y para calcular la Capacitancia se multiplica el resultado de la fórmula por el número de placas menos uno, es decir: N-l; por ejemplo, en un capacitor múltiple que contiene5 placas, N = 5, por lo tanto, N-l = 4 


MEDIDAS DE CAPACITANCIA

Así como la unidad de medida de la tensión eléctrica es el Volt, etc., la unidad de medida de la Resistencia es el Ohm y la unidad de medida de la Capacitancia es el Faradio.



Un capacitor tiene una capacitancia de un Faradio cuando un voltio acumula en él una carga de un Coulomb; hay que recordar que un Coulomb equivale a una carga de 6.25 x 1018 electrones. La carga del Capacitor es producida por el movimiento de los electrones del circuito y se usa con la letra Q para designarla, y se mide en coulomb; la Carga depende de dos factores fundamentales:
a) La tensión a través del circuito y b) la Capacitancia en Faradios del Capacitor.
Esta relación se expresa con la siguiente ecuación: Q = C x E donde Q es la carga que adquiere el Capacitor, en Coulomb; C es la Capacitancia del Capacitor, en Faradios y E es la Tensión eléctrica a través del Capacitor, en voltios.
  
Los Capacitores en paralelo se manejan igual que los resistores en serie, mientras que los capacitores en serie se manejan igual que los resistores en paralelo. La razón de ello puede observarse en la siguiente figura: El área total de las placas es mucho mayor que la de un solo capacitor







CONEXIONES BÁSICAS CON CONCAPACITORES

Así como los Resistores se pueden conectar en serie y en paralelo, los capacitores algunas veces se conectan de la misma forma, sin embargo se manejan exactamente al contrario que los resistores: la Resistencia total de resistores en serie es igual a la suma de los valores de cada uno de los componentes, mientras que en los capacitores en paralelo se suman los valores de cada uno de ellos

1.- Capacitancia Total en paralelo Ctp = C1 + C2 + C3; Ctp=5+ 10+ 15 = 30μf
2.- Capacitancia Total en Serie 1 /Cs = 1 / C1 + C2 / C3 = 1/15+1/15+1/15 = 0.0666 + 0.0666 + 0.0666  = 1 / 0.2 = 5μf
  

PROPIEDADES   DE   LOS  CAPACITORES




Para  entender bien  la  teoría  básica  de  un  capacitor, supongamos que las dos placas que lo forman están colocadas dentro de una envoltura que mantiene el vacío como dieléctrico; así el área que rodea las placas estará libre de átomos. Por consiguiente, si a un capacitor se le conecta una batería, los electrones de la placa positiva serán atraídos por el polo positivo de la batería, mientras que el polo negativo de la batería repelerá los electrones de placa negativa; cuando los electrones libres de la placa positiva.

Son efectivamente transferidos a la placa negativa, se dice que el capacitor está totalmente cargado y la tensión almacenada es igual a la tensión aplicada, además de tener la misma polaridad que la fuente.
Cuando los capacitores se cargan permanecen cargados a menos que se los provea de una línea ó paso de descarga; cuando un capacitor descargado se conecta a una fuente de c.c., primero obra como si se tratara como un corto circuito, tan   pronto el capacitor se carga, el aparente flujo de corriente a  través del capacitor disminuye. Los capacitores permiten el flujo de c.c. sólo por un corto tiempo, luego actúan como un  circuito abierto; sin embargo cuando se trata de
Los capacitores de  alta calidad pueden  mantener una carga por largo periodo de tiempo; por consiguiente,   para   evitar   choques que pueden ser peligrosos, deben ser descargarlos: la mejor manera de hacerlo es colocar un destornillador entre sus terminales durante un minuto.

Teóricamente el material dieléctrico debería ser un aislante perfecto y no debería permitir flujo alguno de comente, sin embargo, no existe tal aislante perfecto, pues siempre hay un escape de corriente de la placa negativa hacia la placa positiva, a esta pequeña corriente se llama "corriente de fuga" ó corriente de escape; actualmente hay tres cosas que ocasionan pérdidas en el capacitor, a saber: a) corriente de fuga ó escape, b) pérdida por resistencia y c) pérdidas en el dieléctrico; las puntas y conexiones incluyendo las placas ofrecen cierta resistencia ¡resistencia interna) a la comente, a ésta pérdida de potencia se le llama : pérdida por resistencia; las pérdidas en el dieléctrico se deben a la fricción molecular dentro del material dieléctrico y algunas veces se le llama histéresis dieléctrica, esta pérdida de potencia ocurre cuando parte de la energía utilizada para cargar el capacitor se disipa en forma de calor debido a la fricción molecular. La cantidad de potencia que se pierde en el dieléctrico debido a la fricción molecular aumenta al aumentar la frecuencia de c.a., y a la inversa, disminuye al disminuir la frecuencia.
Uno de los problemas que ocurren con los dieléctricos es que cada uno de ellos, a cierto voltaje, deja pasar electricidad; dicho voltaje se llama " tensión de ruptura". Si en un capacitor ocurre un arco eléctrico entre sus placas cuando tiene una carga de 600 voltios, se dice que tiene una tensión de tensión de ruptura de 600 voltios. Algunos materiales dieléctricos, todos los de estado sólido, quedan definitivamente dañados después de soportar.


la tensión de ruptura, el capacitor debe ser reemplazado, puesto que el arco eléctrico perfora el dieléctrico; mientras que los capacitores con dieléctrico en estado líquido ó aire raramente sufren daños permanentes, puesto que el dieléctrico se repara por sí mismo después de que se suspende el arco eléctrico; el siguiente cuadro muestra algunos materiales dieléctricos con sus tensiones de ruptura



Los capacitores vienen normalmente especificados según la tensión que se les puede aplicar sin peligro de ruptura; por consiguiente, para escogerlo es necesario conocer su capacitancia tanto como el voltaje del circuito donde se lo va a usar; un capacitor típico de papel, especificado como de 0.1 µf a 600 WVDC (Working Volts D.C.) (Voltaje de trabajo de corriente directa) está diseñado para operar a 600 voltios c.c. Se clasifican de dos tipos: fijos y variables.